Iodine 131

From Wikipedia, the free encyclopedia

Iodine-131 (131I), also called radioiodine (though many other radioactive isotopes of this element are known), is an important radioisotope of iodine. It has a radioactive decay half life of about eight days. Its uses are mostly medical and pharmaceutical. It also plays a role as a major radioactive hazard present in nuclear fission products, and was a significant contributor to the health effects from open-air atomic bomb testing in the 1950s, and from the Chernobyl disaster, as well as being a threatening presence today in the Japanese nuclear crisis. This is because I-131 is a major uraniumplutonium and indirectly thorium fission product, comprising nearly 3% of the total products of fission (by weight).

Due to its mode of beta decay, iodine-131 is notable for causing mutation and death in cells which it penetrates, and other cells up to several millimeters away. For this reason, high doses of the isotope are sometimes paradoxically less dangerous than low doses, since they tend to kill thyroid tissues which would otherwise become cancerous as a result of the radiation. For example, children treated with moderate dose of I-131 for thyroid adenomas had a detectable increase in thyroid cancer, but children treated with a much higher dose did not. Similarly most studies of very high dose I-131 for treatment of Graves disease have failed to find any increase in thyroid cancer, even though there is linear increase in thyroid cancer risk with I-131 absorption at moderate doses.[1] Thus, iodine-131 is increasingly less employed in small doses in medical use (especially in children), but increasingly is used only in large and maximal treatment doses, as a way of killing targeted tissues. This is known as “therapeutic use.”

Find out more here

Effects of exposure

Iodine in food is absorbed by the body and preferentially concentrated in the thyroid where it is needed for the functioning of that gland. When 131I is present in high levels in the environment from radioactive fallout, it can be absorbed through contaminated food, and will also accumulate in the thyroid. As it decays, it may cause damage to the thyroid. The primary risk from exposure to high levels of 131I is the chance occurrence of radiogenic thyroid cancer in later life. Other risks include the possibility of non-cancerous growths and thyroiditis.[citation needed]

The risk of thyroid cancer in later life appears to diminish with increasing age at time of exposure. Most risk estimates are based on studies in which radiation exposures occurred in children or teenagers. When adults are exposed, it has been difficult for epidemiologists to detect a statistically significant difference in the rates of thyroid disease above that of a similar but otherwise unexposed group.[citation needed]

The risk can be mitigated by taking iodine supplements, raising the total amount of iodine in the body and therefore reducing uptake and retention in tissues and lowering the relative proportion of radioactive iodine. Unfortunately, such supplements were not distributed to the population living nearest to the Chernobyl nuclear power plant after the disaster,[7] though they were widely distributed to children in Poland.

Within the USA, the highest 131I fallout doses occurred during the 1950s and early 1960s to children who consumed fresh sources of milk contaminated as the result of above ground testing of nuclear weapons.[8] The National Cancer Institute provides additional information on the health effects from exposure to 131I in fallout,[9] as well as individualized estimates, for those born before 1971, for each of the 3070 counties in the USA. The calculations are taken from data collected regarding fallout from the nuclear weapons tests conducted at the Nevada Test Site.[10]

The Japanese nuclear disaster Fukushima I nuclear accidents of March 2011 resulted in significantly elevated iodine-131 levels in foodstuffs from spinach to tap water. These levels have been detected near the plant and as far away as Tokyo.[citation needed] A peak of 190 Becquerels per liter was recorded in a Tokyo water purification facility.[citation needed] On 27 March 2011, the Massachusetts Department of Public Health reported that 131I was detected in very low concentrations in rainwater from samples collected in Massachusetts, USA, and that this likely originated from the Fukushima power plant.[11] Farmers near the plant dumped raw milk, while testing in the United States found 0.8 pico-curies per liter of iodine-131 in a milk sample, but the radiation levels were 5,000 times lower than the FDA’s “defined intervention level.” The levels were expected to drop relatively quickly [12]


Leave a Reply